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Abstract – The availability of public multiple view stereo 

benchmark datasets has been instrumental in enabling research 

to advance the state of the art in the field and to apply and 

customize methods to real-world problems. Until now, no 

public multiple view stereo benchmark dataset has been 

available for satellite imaging applications. In this work, we 

describe a public benchmark dataset for multiple view stereo 

applied to three-dimensional outdoor scene mapping using 

commercial satellite imagery. This dataset includes fifty 

Digital Globe WorldView-3 panchromatic and multispectral 

images of a 100 square kilometer area near San Fernando, 

Argentina. We also provide high-resolution airborne lidar 

ground truth data for a 20 square kilometer subset of this area 

and performance analysis software to assess accuracy and 

completeness metrics. We report initial results from available 

solutions using this benchmark data and encourage continued 

research by making this benchmark dataset publicly available 

to the research community. 

 

I. INTRODUCTION 

Earth observation satellite constellations provide global 
imaging capabilities to support agricultural and environmental 
monitoring, urban planning, disaster relief, mapping, and 
defense applications. Multiple view satellite imagery enables 
estimation of the three-dimensional (3D) structure of a scene, 
providing a global source of data to support 3D mapping and 
volumetric change detection. Multispectral imagery further 
enables characterization of land use and material identification. 
Until recently, little satellite imagery has been available to the 
public academic community to support computer vision 
research. With the rapid pace of satellite imagery constellation 
development and commercialization, governments and 
companies have begun to invest in making these data more 
accessible (e.g., the Planet Labs Open California initiative [1], 
Landsat on Amazon Web Services [2], and SpaceNet [3]). In 
this work, we provide a public benchmark dataset for multiple 
view stereo (MVS) research, development, and metric 
assessment using commercial satellite imagery. While our 
focus is MVS, we expect these data to also be useful for a 
broad range of topics in computer vision and geospatial 
intelligence. 

MVS datasets have been instrumental in encouraging new 
research and enabling significant improvements in the state of 

the art. Standardized benchmarks for 3D reconstruction 
performance are important for evaluating algorithms, and 
several options are currently available to the community. Each 
benchmark offers unique features and challenges, with some, 
like the Middlebury Mview [4], including a full suite of tools, 
data, ground truth, and recommended metrics. Others include 
both data and ground truth obtained by an active sensor [19], 
and some include data alone that has carefully been chosen and 
collected [6, 21]. These datasets offer an adequate variety of 
objects and contexts including imagery and ground truth for 
small indoor objects [4, 5], large outdoor objects [6], and 
autonomous driving [7]. Benchmark web sites that maintain 
leaderboards further encourage rigorous testing of new 
research ideas to quantify their impact [8, 9]. Having several 
datasets encourages algorithms that generalize well against 
different challenges. 

The proposed benchmark was developed for the IARPA 
Multi-View Stereo 3D Mapping Challenge [10]. It is being 
released to the public to encourage greater interest in geospatial 
data within a broad community of researchers including the 
conventional fields of photogrammetry and remote sensing and 
also computer vision and machine learning. 

 

II. MULTIPLE VIEW STEREO 

The goal of 3D reconstruction is to estimate the most likely 
3D geometry of the scene imaged from multiple viewpoints 
[37]. Within the computer vision community there has been 
extensive research in this area, including [33-38]. Recently, 
with the proliferation of commercial unmanned aerial vehicles 
and improvement of digital airborne and spaceborne cameras, 
some research groups have started developing large-scale 
benchmarks [22, 41] and algorithms [15, 32, 39, 40].  

There are two broad categories of approach for multiple 
view 3D reconstruction from satellite imagery. The first is a 
straightforward extension of binocular stereo, with many pairs 
of images processed independently and then the results fused. 
The second general approach solves the N-view triangulation 
problem for all images simultaneously.  

In pairwise multiple view stereo, pairs of images are 
processed separately by finding dense correspondences and 
triangulating their positions using the sensor camera model. A 
high-quality general-purpose sensor model that minimizes 
errors when mapping between 3D and the image plane is a 
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critical component of this process, and obtaining a good sensor 
model is one of the main obstacles to accurate geometry 
reconstruction. The work of Tao [11] shows that a rational 
polynomial coefficients (RPC) camera model is one solution to 
this problem, and demonstrates the inverse mapping and 3D 
reconstruction process on a stereo image pair. Other variants 
have built on Tao's method, and multiple examples have been 
reported [12-15]. 

Global methods for N-view 3D reconstruction employ a 
volumetric approach [16, 20] that represents a scene with 
voxels and use ray casting to derive a probabilistic model 
describing the presence of a surface within each voxel [17]. 
Pairwise and volumetric reconstruction methods are compared 
in [18], highlighting the challenges of developing a robust 
global solution. For the benchmark dataset described in this 
paper, an example pairwise algorithm has been implemented 
and the source code provided to demonstrate basic concepts. 

 

III. BENCHMARK DATASET 

The proposed multiple view stereo benchmark for satellite 
imagery provides images, ground truth lidar data, and several 
specific challenge areas for metric analysis. 

 

A. Source Imagery 

Source imagery for this benchmark dataset is provided 

courtesy of Digital Globe. Fifty WorldView-3 panchromatic,  

visible, and near infrared (VNIR) images collected between 

November 2014 and January 2016 and one short wave 

infrared (SWIR) image collected in November 2015 are 

provided in National Imagery Transmission Format (NITF). 

The area imaged is near San Fernando, Argentina and is 

shown in Figure 1. Panchromatic image ground sample 

distance (GSD) is approximately 30cm, VNIR GSD is 

approximately 1.3m, and SWIR GSD is approximately 4m. 

 

Figure 1. Polygons for satellite imagery coverage provided in the 

benchmark dataset shown in Google Earth. 

B. Ground Truth Lidar 

Airborne lidar was collected June 2016 for approximately 

20 square kilometers overlapping image coverage as shown in 

Figure 2. Nominal point spacing is 20 centimeters to support 

production of 30cm gridded Digital Elevation Model (DEM) 

products for metric comparison with MVS point clouds 

generated using the 30cm panchromatic imagery. 

Example subsets of the collected lidar data are shown in 

Figure 3, indicating some areas of interest for metric analysis. 

These areas include a broad range of urban building heights 

and spacing for assessing MVS algorithms. Point clouds are 

RGB colored by height with red high and blue low. Another 

example is shown in Figure 4, demonstrating the ability of 

airborne lidar to capture fine detail on vertical features and the 

significant challenge for doing the same with overhead 

imagery from space.  

 

 

Figure 2. Lidar survey coverage (blue polygon) shown in Google 

Earth with satellite image coverage polygons. 

 

C. Challenge Datasets 

Multiple smaller areas within the overlapping image and 

lidar extents have been identified and provided in KML files 

to support metric analysis. Cropped TIFF images and ASCII 

text metadata files are provided for each of these areas and are 

generally easier to work with than the much larger full NITF 

image files.  

 

D.  Software 

Along with satellite imagery and ground truth lidar data, 
the benchmark package includes source code to make working 
with satellite imagery more accessible and to support metric 
analysis of results. The following sections discuss working 
with satellite image data and outline the software provided.  
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Figure 3. Lidar point clouds shown colored by height with red 

high and blue low (right) and context imagery shown from 

Google Earth with 3D terrain option (left). 

  

  
Figure 4. Comparison of lidar and imagery for Ferris wheel 

highlights limitation of satellite imagery for capturing vertical 

features; height color lidar point cloud (top left), lidar with 

intensity (top right), Google Earth 3D terrain based on multiple 

view airborne imagery (bottom left), and Google Earth imagery 

(bottom right). 

IV. SATELLITE IMAGE CROPPING 

To simplify working with very large satellite images, we 

provide source code for cropping a NITF image and exporting 

a cropped TIFF image and text metadata file using a KML 

polygon with the latitude and longitude coordinates of the 

desired bounding box, as shown in Figure 5.  

NITF files contain the parameterized camera model (RPC 

coefficients) in their header datastream. As part of the 

metadata accompanying the TIFF files, the RPC coefficients 

are listed. 

 

 

  
Figure 5. Image cropping software provided in the benchmark 

package reads a full NITF image (top) and exports a cropped 

TIFF image (bottom left) and text metadata file for a region 

identified in a KML polygon. 

 

V. RPC SENSOR MODEL 

One challenge in 3D reconstruction given a collection of 

satellite images is the design of an accurate sensor model. 

While a direct physics-based sensor model may be ideal for 

any individual sensor, a generalized model such as the rational 

function model (RFM) [23] is desirable to support the variety 

of available sensors. RFM describes intrinsic and extrinsic 

sensor properties and models them using rational function 

coefficients (RFC) 
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where    and    represent row and column coordinates in the 

normalized image coordinate system,       represents the 3D 

position of the imaged object (i.e. Longitude, Latitude, 

Elevation).   ( )   ( )   ( )  and   ( )  are polynomials 

with RFC coefficients. These are also referred to as rational 

polynomial coefficients (RPC). RPC is a commonly used 

replacement sensor model, and it is a specific case of the RFM 

that is in forward form (mapping of 3D points to pixels) and 

has third-order polynomials [24]. A tagged record extension 

for the RPC sensor model is included NITF image file format 

[25] standard. The following discussion outlines forward and 

inverse mapping using RPC. Example source code is provided 

in the benchmark software. 

 

A. RPC Forward Mapping 

The forward model of a RPC camera maps 3D points into 

image plane coordinates. The model starts with the scaling of 

the world space coordinates to (-1, 1) range: 
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where       represent longitude, latitude, elevation 

magnitudes, and                   are offset and scale 

parameters respectively. They are available as metadata in the 

NITF image format. 

The ratio of two third order polynomials is then calculated 

to obtain the normalized image coordinates     -line (row) and 

sample (column) according to: 
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Finally, line and sample values are obtained from de-

normalizing equation 3: 

           

           
(5) 

B. Inverse Mapping Deduction 

When only forward mapping coefficients are available, 

inverse mapping has to be performed from other information 

sources. Tao et al. showed in [11] that given a stereo pair and 

their point correspondences, triangulation principles can be 

used to estimate the 3D point measurement. They show that 

linearization of the RPC model makes the problem more 

tractable. Given a point correspondence (   )( )  in image 1 

and (   )( ) in image 2, we can re-write the first order Taylor 

approximation of the model as: 

[
 
 
 
 
      

( )

     
( )

     
( )

     
( )
]
 
 
 
 
 

 

[
 
 
 
 
 
 
 
 
     

( )

  

    
( )

  

    
( )

  

    
( )

  

    
( )

  

    
( )

  

    
( )

  

    
( )

  

    
( )

  

    
( )

  

    
( )

  

    
( )

  ]
 
 
 
 
 
 
 
 
 

 [
  ̂ 
  ̂
  ̂

]  

[
 
 
 
   
( )
  ̂ 

( )

  
( )
  ̂ 

( )

  
( )
  ̂ 

( )

  
( )
  ̂ 

( )
]
 
 
 
 

 

(6) 

or in matrix form,  

       (7) 

The least square solution is given by: 

  [         ]  (    )  (    ) (8) 

with   being the weight matrix for the image points. If some 

correspondences in the dense matching process are more 

reliable than others,   can be used to adjust appropriate 

reliability factors. However, in many cases it is set to the 

identity matrix. Vector   is iteratively minimized by finding 

   according to equation 8. Initialization can be done by only 

using the first-order terms of the RPC model, meaning that the 

first iteration only assumes polynomials with four coefficients. 

Further refinement using non-linear optimization from the 

linearized solution leads to slightly more accurate results with 

an extra computation penalty. 

 

 

VI. EXAMPLE MVS IMPLEMENTATION 

This section describes an algorithm we designed as a 

baseline for the benchmark evaluation, as well as for testing 

the dataset resources such as metrics, point cloud registration, 

and ground truth validation. Figure 6 shows the main steps of 

the algorithm. 
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We designed a baseline algorithm that follows a classic 

approach of (sparse and/or dense) feature correspondence and 

point triangulation to generate point clouds. Given a set of 

multiview images the algorithm processes each pair of images 

separately. Each image is (planar) rectified with respect to a 

common grid using matrices    and   . For simplicity, we set 

             is estimated from a collection of sparse feature 

correspondences  ( )           and  ( )          according to the 

model   
( )
      

( )
[31], where   

 
 is a 2-d homogeneous 

point ([     ]) in image j.    is modeled as an 8-parameter 

transformation, i.e.    [                 ]  relates points 

from image 1 and 2. RANSAC robust estimation is used to 

achieve best rectification [26] given a set of inliers 

( ( )          and  ( )         ), which are also used for the 

block adjust step (see figure 6). Once    is found both sets of 

correspondences are mapped to the reference grid using    

according to:         
( )
     

( )         
( ). 

In order to correct misalignments due to parallax and/or  

noisy estimates of   , dense optical flow estimation is 

performed. In particular, we use SiftFlow algorithm [27] that 

has proven its efficiency in other applications when following 

a rectification [28]. We find the planar rectification step 

critical since it helps reduce the search space of the optical 

flow and reduce its likelihood of falling into local minima. 

The combination of both planar rectification and dense 

SiftFlow gives us the most accurate dense 2-D coordinate 

match (occlusions aside). 

Parallel to the optical flow computation and before the last 

step (triangulation), we perform block adjustment [11]. It was 

shown in [29] that simple addition of an offset coefficient into 

the RPC model can reduce the error of mapping 3-D points 

back to the image plane. Since the camera sensor is very far 

from the earth's surface, rays can be assumed to be parallel for 

each image pixel. Therefore, simple image translations are 

added into the model described in equation 1.   ̂  
  ( ̂̂  ̂  ̂)

  ( ̂̂  ̂  ̂)
 

   and  ̂  
  ( ̂̂  ̂  ̂)

  ( ̂̂  ̂  ̂)
     describe the block-adjusted RPC 

model. Where  ̂  ̂  ̂ are the triangulated points of the subset 

of inlier points  ( )          and  ( )          from the planar 

rectification step.    and    are the translation offsets and are 

estimated by minimizing the following error measure [29]: 

     (     )  ∑ ((   )  ( ̂  ̂) )
 

       

 (9) 

Once the offsets are estimated, final dense triangulation is 

done following the model described in section V.B. 

When many images are available, reconstruction 

information from each pair is fused into a final 3D point 

cloud. In our case, a median filter of the aligned point clouds 

is performed: 

 

       (       )  

      (
         

( ) (       )          
( ) (       )   

         
(      )(       )

)  

(10) 

The example MVS algorithm just described is 

implemented in MATLAB and uses the cropped TIFF images 

and text metadata files produced by our NITF cropping tool 

(section IV). 

Figure 6. MVS example implementation block diagram. 
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VII.  EFFICIENT SPECTRAL CALIBRATION 

WorldView image products are delivered with relative 

radiometric correction applied to the image data, but many 

applications require that these digital values be converted to 

top-of-atmosphere radiance before further processing. 

Commercial tools are available that use calibration 

information provided by Digital Globe [30] to perform this 

absolute calibration, but they are typically very time-

consuming. Due to the large number of images in the 

benchmark dataset, we are providing a software tool and 

accompanying source code that performs this calibration 

process significantly faster. Both panchromatic and 

multispectral WorldView NITF images are supported. The 

output of this tool is a top-of-atmosphere radiance image in 

ENVI format. This may be used for RGB encoding of MVS 

point clouds, though this has not yet been done with the 

example MVS implementation provided. Figure 7 shows an 

example of spectral calibration with the benchmark software. 

VIII.   EVALUATION METRICS 

In this section, we describe the metrics that accompany our 

dataset. Two metrics are used to evaluate 3D reconstruction 

fidelity: accuracy and completeness [4]. The metric algorithms 

evaluate input solutions against truth data to provide an 

objective measure for comparison. 

A. Point Cloud to Grid Conversion 

Ground truth data is formatted as a geo-tagged grid of Z 

values covering the challenge area. Each cell of the grid is 

uniformly spaced across the rectangular extent of the grid. 

The input data consists of a geo-tagged point cloud. The 

input point cloud is converted into an input Z grid prior to 

comparison against the ground truth. The input grid is created 

by first making a grid of the same size as the truth data. Each 

point in the input cloud is binned into a grid cell using the 

point’s X, Y coordinate. The value for each grid cell is the max 

Z value from all points binned into that cell. If no points land 

in a particular cell that cell is marked as empty. 

B. Accuracy Error 

We calculated accuracy error using only the overlapping 

valid truth and input grid cells. This approach prevents the 

metric from increasing when the number of empty input cells 

increases. We account for incomplete input data using the 

completeness metric (described in section VIII.C). 

 Algorithm 1 details the accuracy metric. In is the input 

grid being evaluated and Truth is the truth Z grid. When 

calculating accuracy from the Error grid, only non-empty 

cells in Error are used. In our framework we defined two 

accuracy error functions: N-th element error and the root mean 

square error (RMSE). The N-th element error allows us to 

report on the error given a certain percentage of total points. 

For instance, if the median error (threshold of 50%) is our 

measure for accuracy, the N/2-th Error would be reported. N 

is the total number of overlapping valid truth and input grid 

cells. Similarly reasoning can be done for the root mean 

square error (RMSE) also estimated in the benchmark 

software. In this case, the Error measure in algorithm 1 is 

replaced by the corresponding RMSE formula: 

√(            )
 
   . 

 

 

  

 
Figure 7. Uncalibrated RGB (left top) shown with calibrated 

RGB (top right) and spectral samples (bottom). 
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C. Completeness 

Completeness is the fraction of valid truth cells with a 

corresponding non-empty input value within a threshold of the 

truth value for that cell in terms of Z error. Empty input grid 

cells are counted as incomplete as the MVS algorithm fails at 

placing a 3D point in that cell within the threshold. The 

detailed algorithm for completeness is shown in Algorithm 2.  

 

D. Point Cloud Registration 

Registration handles aligning the truth and input data and 

removes any translational shift between them.  The algorithm 

for removing translational shift searches through a set of 

possible translations and selects the position that minimizes 

the median error of the input. For performance reasons, 

registration does not search through all possible translations. 

Instead, it approximates by searching through a series of 

progressively finer search grids. 

Our registration algorithm aims at minimizing the median 

error between the truth and the input by performing a full 

search in the truth reference grid. It does so at several 

resolution levels or spacing, starting from a coarse 3-meter 

spaced grid to half the spatial resolution of the truth grid. At 

each level it finds the translational shift that minimizes 

(median) error. Subsequent levels refine the results to find the 

optimal registration between truth and input grids. Algorithm 

3 shows the registration process. The Refine function re-

centers the search space around       and reduces the spacing 

between the possible shifts contained in S. CreateGrid is the 

cloud-to-grid conversion process described in section VIII.A 

with the translation Shift applied to all points in        . 

Spacingdesired is the final desired spacing for the search grid. 

We set Spacingdesired to half of the spatial resolution of the 

truth grid. The initial search space S is set to a 3 meter spaced 

square grid of possible translations covering a maximum of   

27 meters. 

 

 

IX. METRIC ANALYSIS 

Metric analysis results are shown in Table 1 for point 

clouds produced during the IARPA Multi-View Stereo 3D 

Mapping Challenge Explorer contest on TopCoder. Results for 

the JHU/APL example implementation provided in the 

benchmark dataset are also shown for comparison. Solutions 

are shown in descending order of completeness (the fraction 

of points with Z error less than 1 meter). Ground truth lidar 

and solutions for this dataset are shown in Figure 8. Initial 

results are promising and demonstrate characteristic 

differences in the various approaches. While the error metric 

values are somewhat inflated here due to unfiltered seasonal 

features (e.g., foliage) and other temporally varying features, 

there appears to be significant room for improvement. 

Additional challenge areas are provided in the benchmark data 

that include a broad range of building heights and spacing as 

well as other variation in scene content. 

 

Table 1 Scores Sorted by Completeness Metric 

Solver Completeness Median (m) RMS (m) 

CarloDef 79.0% 0.260 2.615 

KevinLaTourette 74.7% 0.278 2.727 

SDRDIS 73.8% 0.180 3.401 

JHU/APL Example 72.3% 0.322 2.720 

 

X. CONCLUSION 

The multiple view stereo benchmark for satellite imagery 

provides imagery, ground truth lidar data, and software to 

support research, development, and metric analysis. Initial 

analysis results using this dataset are demonstrated in this 

paper. Downloads and additional information regarding open 

source multiple view stereo solutions are available at 

http://www.jhuapl.edu/satellite-benchmark.html. 

 

http://www.jhuapl.edu/satellite-benchmark.html


Approved for Public Release; Distribution is Unlimited 

ACKNOWLEDGEMENT 

WorldView-3 imagery was provided courtesy of Digital 
Globe. This work was sponsored by IARPA under contract 
2012-12050800010. The authors would like to thank Booz 
Allen Hamilton, TopCoder, and everyone who participated in 
the IARPA Multi-View Stereo 3D Mapping Challenge. Due to 
scheduling constraints, only a few initial results from their 
work are shown in this paper. 

 

  
Ground truth lidar CarloDef 

  
KevinLaTourette SDRDIS 

 
JHU/APL example 

Figure 8. Explorer Dataset Point Clouds. 

 

REFERENCES 

[1] https://www.planet.com/products/open-california 

[2] https://aws.amazon.com/public-data-sets/landsat/ 

[3] https://aws.amazon.com/public-data-sets/spacenet/ 

[4] S. Seitz, B. Curless, J. Diebel, D. Scharstein, and R. Szeliski. “A 
comparison and evaluation of multi-view stereo reconstruction 
algorithms”. In IEEE Computer Society Conference on Computer 
Vision and Pattern Recognition (CVPR’2006), volume 1, pages 519–
526, June 2006. 

[5] R Jensen, A Dahl, G Vogiatzis, E Tola, H Aanaes, ,” Large Scale Multi-
view Stereopsis Evaluation”IEEE Conference on Computer Vision and 
Pattern Recognition (CVPR), 2014, 406-413 

[6] C. Strecha, W. von Hansen, L. J. V. Gool, P. Fua, and U. Thoennessen. 
“On benchmarking camera calibration and multi-view stereo for high 
resolution imagery”. In Conference on Computer Vision and Pattern 
Recognition (CVPR), 2008. 

[7] A. Geiger, P. Lenz, and R. Urtasun. “Are we ready for autonomous 
driving? the kitti vision benchmark suite”. Proceedings of the IEEE 
Conference on Computer Vision and Pattern Recognition (CVPR), 
2012. 

[8] http://vision.middlebury.edu/mview/ 

[9] http://www.cvlibs.net/datasets/kitti/ 

[10] https://www.iarpa.gov/index.php/working-with-iarpa/prize-challenges 

[11] V. Tao and Y. Hu. “3d reconstruction methods based on the rational 
function model”. ASPRS Photogrammetic Engineering and Remote 
Sensing Journal, 68(7):705–714, 2002. 

[12] Z. Moratto, M. Broxton, R. Beyer, M. Lundy, and K. Husmann. “Ames 
stereo pipeline, nasa’s open source automated stereogrammetry 
software”. In Proceedings of the Lunar and Planetary Science 
Conference, page 2364, 2010. 

[13] M. Broxton and L. Edwards. “Ames stereo pipeline: Automated 3d 
surface reconstruction from orbital imagery”. In Proceedings of the 
Lunar and Planetary Science Conference, page 2419, 2008. 

[14] E. Zheng, K. Wang, E. Dunn, and J. M. Frahm. “Minimal solvers for 3d 
geometry from satellite imagery”. In 2015 IEEE International 
Conference on Computer Vision (ICCV), pages 738–746, Dec 2015. 2 

[15] G. Kuschk. “Large Scale Urban Reconstruction from Remote Sensing 
Imagery”. ISPRS - International Archives of the Photogrammetry, 
Remote Sensing and Spatial Information Sciences, (1):139–146,  2013.  

[16] D. Crispell, J. L. Mundy, and G. Taubin. “A variable resolution 
probabilistic three-dimensional model for change detection”. IEEE 
Transactions on Geoscience and Remote Sensing, 2011. 

[17] T. Pollard, I. Eden, J. Mundy, and D. Cooper. “A volumetric approach 
to change detection in satellite images”. ASPRS Photogrammetic 
Engineering and Remote Sensing Journal, 76(7):817–831, 2010. 

[18] O. Ozcanli, Y. Dong, J. Mundy, H. Webb, R. Hammond, and V. Tom. 
“A comparison of stereo and multiview 3-d reconstruction using cross-
sensor satellite imagery”. In Proceedings of the IEEE International 
Conference on Computer Vision and Pattern Recognition (CVPR), 
pages 17–25, 2015. 

[19] H. Aanæs, A. L. Dahl, and V. Perfanov. “A ground truth data set for two 
view image matching”. Technical report, DTU Informatics, Technical 
University of Denmark, 2010. 

[20] A. Ulusoy, M. Black, and A. Geiger. “Patches, Planes and Probabilities: 
A Non-local Prior for Volumetric 3D Reconstruction”. Proceedings of 
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 
2016. 

[21] K. Wilson and N. Snavely. “Robust global translations with 1 dsfm”. In 
Proceedings of the European Conference on Computer Vision,  2014. 

[22] N. Haala. “Benchmark on image matching”. Technical report, Institute 
for Photogrammetry, University of Stuttgart, 2014. 

[23] M. Mandani. “Real-time sensor independent positioning by rational 
functions”. In Proceedings of the ISPRS Workshop on Direct vs. 
Indirect Methods of Sensor Orientations, pages 64–75, 1999. 

[24] G. Dial and J. Grodecki. “RPC replacement camera model”. In 
Proceedings of the ASPRS, 2005. 

[25] “The compendium of controlled extensions for the national imagery 
transmission format (nitf)”. Tech.report, National Imagery Agency2000. 

[26] M. A. Fischler and R. C. Bolles. “Random sample consensus: A 
paradigm for model fitting with applications to image analysis and 
automated cartography”. Commun. ACM, 24(6):381–395, June 1981. 

[27] C. Liu, J. Yuen, A. Torralba, J. Sivic, and W. T. Freeman. “Sift flow: 
Dense correspondence across different scenes”. Proceedings of the 10th 
European Conference on Computer Vision: Part III, pages 28–42, 2008. 

[28] Y. Li, J. Yuen, A. Torralba, J. Sivic, and W. T. Freeman. “Exploiting 
reflection change for automatic reflection removal”. In Proceedings of 
the IEEE International Conference on Computer Vision (ICCV), pages 
2432–2439, 2013. 

https://www.planet.com/products/open-california
https://aws.amazon.com/public-data-sets/landsat/
https://aws.amazon.com/public-data-sets/spacenet/
http://vision.middlebury.edu/mview/
http://vision.middlebury.edu/mview/
http://www.cvlibs.net/datasets/kitti/
http://www.cvlibs.net/datasets/kitti/
https://www.iarpa.gov/index.php/working-with-iarpa/prize-challenges


Approved for Public Release; Distribution is Unlimited 

[29] O. C. Ozcanli, Y. Dong, J. L. Mundy, H. Webb, R. Hammoud, and V. 
Tom. “Automatic geolocation correction of satellite imagery”. 
International Journal of Computer Vision, 116(3):263–277, 2016. 

[30] M. Kuester, "Radiometric use of WorldView-3 Imagery", February 
2016, https://www.digitalglobe.com/resources/technical-information 

[31] R. I. Hartley and A. Zisserman. “Multiple View Geometry” in Computer 
Vision. Cambridge University Press, ISBN:0521540518, sec. ed., 2004. 

[32] Carlo de Franchis, Enric Meinhardt-Llopis, Julien Michel, Jean-Michel 
Morel, and Gabriele Facciolo, "An automatic and modular stereo 
pipeline for pushbroom images",ISPRS Annals of the Photogrammetry, 
Remote Sensing and Spatial Information Sciences, Volume II-3, 2014. 

[33] Yasutaka Furukawa, Brian Curless, Steven M. Seitz, and Richard 
Szeliski. Towards Internet-scale multiview stereo. In IEEE Conference 
on Computer Vision and Pattern Recognition, 2010. 

[34] Brian Curless and Marc Levoy. A volumetric method for building 
complex models from range images. In ACM SIGGRAPH, 1996. 

[35] C. Baillard, C. Schmid, A. Zisserman, and A. W. Fitzgibbon. Automatic 
line matching and 3D reconstruction of buildings from multiple views. 
In ISPRS Conference on Automatic Extraction of GIS Objects from 
Digital Imagery, pages 69–80, 1999. 

[36] Sameer Agarwal, Noah Snavely, Ian Simon, Steven M. Seitz, and 
Richard Szeliski. Building Rome in a day. In IEEE International 
Conference on Computer Vision, 2009. 

[37] Y. Furukawa, and C. Hernandez, “Multi-View Stereo: A Tutorial”, 
Foundations and Trends in Computer Graphics and Vision Series, Now 
Publishers Incorporated, 2015. 

[38] S. Fuhrmann, F. Langguth, and M. Goesele, “MVE-A Multi-View 
Reconstruction Environment”, Proceedings of the Eurographics 
Workshop on Graphics and Cultural Heritage, Darmstadt, Germany 
2014. 

[39] E. Tola, C. Strecha and P. Fua, “Efficient large-scale multi-view stereo 
for ultra high-resolution image sets”, Machine Vision and Applications, 
May 2011. 

[40] A. Ulusoy, M. Black, and A. Geiger, “Patches, Planes and Probabilities: 
A Non-local prior for volumetric 3D reconstruction”, Proceedings of 
IEEE on Computer Vision and Pattern Recognition (CVPR), Las Vegas, 
USA, 2016. 

[41] http://www2.isprs.org/commissions/comm1/wg2/benchmark.html 

 

https://www.digitalglobe.com/resources/technical-information
http://www2.isprs.org/commissions/comm1/wg2/benchmark.html

